
SOME MODELS OF STATIONARY
THERMOELECTRIC REFRIGERATORS
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Refrigerators based on the transverse effect of Peltier or Ettingshausen that operate under adiabatic
conditions and also a refrigerator based on the Thomson effect are suggested.

An anisotropic thermoelectric refrigerating element and an Ettingshausen refrigerating element are
distinguished by the fact that one of their lateral faces is thermostatted [1, 2]. It is assumed that this face is
in ideal thermal contact with a thermostat and at the same time it is electrically insulated from the thermostat.
In the present case, these two requirements are in contradiction with each other. Therefore, it becomes nec-
essary to create such a structure in which there would be no need for thermostatic control of the lateral face.
For this purpose, in the present work the author suggests refrigerating elements whose operating effects are
the transverse Peltier effect or the Ettingshausen effect, while the lateral faces are adiabatically insulated from
the environment. 

The possibility of creating a refrigerator based on the Thomson effect is also considered.
1. Adiabatic Anisotropic Refrigerating Element (ARE). As the ARE material, we select a ther-

moelectrically anisotropic homogeneous semiconductor with temperature–independent kinetic coefficients.
Then a heat-conduction equation can be written in the form

∂2T

∂x2  + 
∂2T

∂y2  + γ = 0 , (1)

where the temperature is considered to be two-dimensional (Fig. 1). The boundary conditions are as follows:

T (0, y) = T (l, y) = T0 , (2)

∂T

∂y



 y=0

y=h

 − βT y=0
y=h

 = 0 . (3)

Conditions (2) mean the thermostatic control of the end faces of the ARE at the temperature T0, while con-
ditions (3) mean the adiabatic insulation of the lower and upper faces.

The solution of Eq. (1) with conditions (2) and (3) can easily be found by the Fourier method. This
solution has the form

T (x, y) = T0 − 
1
2

 γx (x − l) + 
β
2

  ∑ 

n=1

∞

 
T0Dn − 

1
2

 γCn

sinh δnh
 ×
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× 




exp (− δnh) − 1

δn − β
 exp (δny) + 

exp (δnh) − 1

δn + β
 exp (− δny)




 sin δnx ,

where Dn = 2(1 − (−1)n)/(nπ) and Cn = −4l2(1 − (−1)n)/(nπ) are the coefficients of expansion of 1 and of the
functions x(x − l) into Fourier series in sines.

The temperature distribution over the face y = 0 is as follows:

T (x, 0) = T0 − 
1
2

 γx (x − l) + β  ∑ 

n=1

∞

 
T0Dn − 

1
2

 γCn

(δn
2 − β2) sinh δnh

 [β sinh δnh + δn (1 − cosh δnh)] sin δnx .

Cooling will occur on condition that the third term in the last expression is negative.
We estimate the temperature at the point x = l ⁄ 2 if a current flows in the negative x direction (Fig.

1). Let α12 = 10−4 V/K, χ = 10−2 W/(cm⋅K), ρ = 10−3 Ω⋅cm, and δnh ≥ 3. We obtain

T (l ⁄ 2, 0) = T0 − 
1
8

 γl2 − 
βl
π

  ∑ 

n=1

∞

 
T0Dn − 

1
2

 γCn

n
 sin 

nπ
2

 . (4)

The last expression is written on condition that sinh δnh C cosh δnh and δn >> β. Let T0 = 300 K and jl = 60
A/cm; then, according to Eq. (8), T(l ⁄ 2, 0) = 270 K, i.e., the temperature decrease is 30 K.

2. Ettingshausen Adiabatic Refrigerating Element (RE). The Ettingshausen RE on specimens with
a thermostatted face was investigated, for example, in [3, 8]. As the RE material, Bi and BiSb-based alloys
were used. The current was directed over the trigonal axis, the magnetic field was directed over the bisector
axis, and the temperature drop was guided over the binary axis. The Ettingshausen cooling effect is of inter-
est since it can be applied to the region of cryogenic temperatures. The author of the present work made a
certain contribution to the investigation of the Ettingshausen effect on specimens with a thermostatted lateral
face [9]. We have noted above that it is difficult to attain a reliable thermal contact between the lateral face
and the thermostat.

Let the RE of the above-indicated orientation be made of a Bi single crystal. Assuming the kinetic
coefficients of the RE material to be independent of coordinates and temperature, and heat conduction to be
isotropic, we direct the current over the trigonal axis and the magnetic field, over the bisector axis (Fig. 1).
Then the heat-conduction equation will be written in the form

Fig. 1. Schematic diagram of the adiabatic ARE or the Ettingshausen
adiabatic RE (in the case of the Ettingshausen RE: x is the trigonal axis,
y is the binary axis, and z is the bisector axis). The faces y = 0 and y =
h are adiabatically insulated from the environment.
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∂2T

∂x2  + 
∂2T

∂y2  + 2η 
∂T

∂y
 + γ = 0 . (5)

The boundary conditions are

T (0, y) = T (l, y) = T0 , (6)

∂T

∂y



 y=0

y=h

 + ηT y=0
y=h

 = 0 . (7)

The solution of Eq. (5) with conditions (6) and (7) will be as follows:

T (x, y) = T0 − 
1
2

 γx (x − l) + 
η
2

 exp (− ηy)  ∑ 

n=1

∞

 
T0Dn − 

1
2

 γCn

εn sinh εnh
 ×

× [(exp (− εnh) − exp (ηh)) exp (εny) + (exp (εnh) − exp (− ηh)) exp (− εny)] sin δnx ,

where Dn and Cn are defined in item 1. We estimate the temperature at the point (l ⁄ 2, 0) from the formula

T (l ⁄ 2, 0) = T0 + 
1
8

 γl2 + η  ∑ 

n=1

∞

 
cosh εnh − exp ηl

εn sinh εnh
 

T0Dn − 

1
2

 γCn



 sin 

nπ
2

 .

Provided that ηh << δnh and h ≈ l ≈ 1 cm, the last expression will be of the form

T (l ⁄ 2, 0) = T0 + 
1
8

 γl2 + η  ∑ 

n=1

∞

 
T0Dn − 

1
2

 γCn

δn
 sin 

nπ
2

 .

For numerical estimation, we select the following parameters: ρ = 10−3 Ω⋅cm, QH = 2⋅10−4 V/K, χ =
10−3 W/(cm⋅K), j = −16 A/cm2, and T0 = 80 K. We obtain T(l ⁄ 2, 0) = 72 K. Further work on the adiabatic
RE of Ettingshausen must involve optimization of the parameters (material, dimensions, current, etc.).

3. RE Model Based on the Thomson Effect. The Thomson effect (TE) involves the liberation (ab-
sorption) of heat in the volume of a nonisothermal conducting medium through which an electric current
flows. The heat is liberated (absorbed) per unit volume [10]:

qT = T 
dα
dT

 
dT
dx

 j .

The Thomson effect has long been discovered [11] but has not found practical application.
Below we suggest a phenomenological model of a stationary refrigerator based on the Thomson ef-

fect; in this model a temperature gradient and an electric current coincide in direction. Having set that the
specific resistance and thermal conductivity of the RE material as well as the derivative dα ⁄ dT are constant
and that the temperature distribution is one-dimensional, we write the heat-conduction equation in the station-
ary case in the form
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d2T

dx2  − δT 
dT

dx
 + γ = 0 (8)

and consider it simultaneously with the boundary conditions

T (0) = T (l) = T0 . (9)

To solve this problem, a grid method is used [12], according to which derivatives are replaced by their ap-
proximate values that are expressed in terms of the differences of the values of the function at separate dis-
crete node points. As a result of these transformations, the differential equation is replaced by equivalent
relations in finite differences.

Before proceeding to numerical estimations of the temperature at separate points, we note that the
problem will be solved more exactly, the larger the number of subdivisions of the specimen length into equal
segments, i.e., the smaller p. However, a large number of subdivisions necessitates the use of a computer,
which results in an analyticity loss. Therefore, we restrict ourselves to a small number of subdivisions, as-
suming the RE length to be not very large.

Let us subdivide the RE length into four equal parts. Then Eqs. (8) and (9) lead to the system of
equations for T1, T2, and T3 (Fig. 2)

T0 + T2 − 2T1 − 
δp
2

 T1 (T2 − T0) + γp2 = 0 ,

T1 + T3 − 2T2 − 
δp
2

 T2 (T3 − T1) + γp2 = 0 ,

T2 + T0 − 2T3 − 
δp
2

 T3 (T0 − T2) + γp2 = 0 ,

from which we find

T1 = 
2T0 + 3γp2

1 − δpT0
 ⁄ 2

 − 
1 + δpT0

 ⁄ 2
1 − δpT0

 ⁄ 2
 T3 ,   T2 = 

(2 + δpT0
 ⁄ 2) T3 − γp2 − T0

1 + δpT3
 ⁄ 2

 ,  T3 = 
√B2 − 4AC  − B

2A
 ,

A = 2δp 
1 + δpT0

 ⁄ 2
1 − δpT0

 ⁄ 2
 , B = (2 + δpT0

 ⁄ 2) 



1 − 

δp

2
 
2T0 + 3γp2

1 − δpT0
 ⁄ 2




 + (2 − δpT0

 ⁄ 2) 
1 + δpT0

 ⁄ 2
1 − δpT0

 ⁄ 2
 −

Fig. 2. Schematic diagram of the Thomson thermoelectric refrigerator: 1)
specimen; 2) current leads to the specimen.
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− 
δp

2
 
1 + δpT0

 ⁄ 2
1 − δpT0

 ⁄ 2
 (T0 + γp2) + 




T0 − 2 

2T0 + 3γp2

1 − δpT0
 ⁄ 2




 
δp

2
 + 





δpT0

2
 
2T0 + 3γp2

1 − δpT0
 ⁄ 2

 + γp2



 ,

C = 
2T0 + 3γp2

1 − δpT0
 ⁄ 2

 



(2T0 + γp2) 

δp

2
 − 2




 .

Now we estimate numerically the temperatures T1, T2, and T3. We set l = 1 cm, T0 = 300 K, ρ = 10−3 Ω⋅cm,
χ = 10−2 W/(cm⋅K), dα ⁄ dT = 10−4 V/K2, and j = 0.15 A/cm2. For these parameters we will have γ =
2.3⋅10−3 K/cm2, δ = 1.5⋅10−3 (K⋅cm)−1, and δpT0

 ⁄ 2 = 0.056. Since δpT0
 ⁄ 2 << 1, we obtain approximately that

A = 2δp, B = 4, and C = −4T0 and, correspondingly T3 = T0(1 − δpT0
 ⁄ 4), T1 = T0(1 + δpT0

 ⁄ 4), and T2 =
T0(1 − δpT0

 ⁄ 2). The temperature T2 = 280 K. Thus, in the case considered we have a decrease of 20 K in
the temperature.

We note the following circumstance. If in the expressions for T1, T2, and T3 we replace j by (−j),
then T1, T2, and T3 become different, which is apparently in contradiction with a physical situation. For ex-
ample, it is obvious that T2 must not depend on the direction of the current. This contradiction can be elimi-
nated if we take into consideration that on replacing j by (−j) the sign of the derivative dT ⁄ dx is also
changed, so that the product jdT ⁄ dx in Eq. (8) does not change sign. At the same time, T1 and T3 change
places, whereas T2 remains the same. The dependence T(x) is shown qualitatively in Fig. 3, from which it is
clear that the point at which the temperature is minimum can be shifted relative to x = 2p.

The above calculations are of an illustrative nature and are called upon to show that the Thomson
effect can serve for the purpose of cooling. Further work must be aimed at searching for optimum materials,
currents, and specimen dimensions, which is not the subject of the present investigation.

NOTATION

T, temperature; x, y, z, axes of a Cartesian coordinate system; h, height; l, RE length; β = α12j ⁄ χ;
α12, coefficient of transverse thermal e.m.f; εn = (δn

2 + η2)
1⁄2; δn = nπ ⁄ l; n = 1, 2, 3, ..., summation index; η

= QHj ⁄ χ; Q, Nernst coefficient; H, magnetic field strength; δ = (dα ⁄ dT)j ⁄ χ; γ = ρj2 ⁄ χ; α, thermal e.m.f
depending linearly on temperature; ρ and χ, specific resistance and thermal conductivity; j, current density;
qT, Thomson volume heat density; p = l ⁄ 4; T1, T2, and T3, temperatures of the points in the Thomson RE;
T0, temperature of the thermostat.

Fig. 3. Temperature distribution in the specimen of the Thomson refrig-
erator for the forward (+j) and backward (−j) directions of the electric
current.
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